Titanium Dioxide Nanoparticles in Sunscreens: Properties, Current Regulations, and Potential Effects on Human and Environmental Wellbeing

Katherine Yu

Abstract


From 2001 to 2010, the incidence rates of melanomas have increased by over 2% for both Canadian men and women. Titanium dioxide nanoparticles are common additives to sunscreen products. Their ability to render creams and lotions transparent, as well as their use as an ultraviolet light filter makes them a popular choice. Yet their effects on the skin, other organs, and the environment are largely unexplored, giving rise to questions about their safety. Current research findings report that titanium dioxide nanoparticles tend to be less hazardous to organisms than other nanomaterials. Nonetheless, studies on test animals and cell cultures show signi cant neurological, pulmonary, cardiac, and genetic damage once titanium dioxide nanoparticles have been absorbed into the bloodstream through inhalation and ingestion. Nanoparticles are also usually discharged as feces and urine, rinsed off, or disposed of through sewage to enter wastewater treatment plants and released into the surrounding ecosystems. The largest obstacle in nanoparticle research is the lack of consistency in terms of measuring and reporting ndings. Since the amounts of nanoparticles present after experiments are often not recorded, it is difficult to quantify the amount of nanoparticles in our environment and the rate at which they are released. In addition, manufacturers often do not label their products accurately, leading to misinformed consumers and the potential for adverse health effects. It is for these reasons that the scientific community, governments, industries, and environmental groups need to collaborate in the interest of public health and environmental sustainability in order set the precedence for future scientific advancements. This review provides background information on the properties of titanium dioxide nanoparticles, the effects of such particles on human and environmental health, the current regulations in place in Europe and North America, as well as suggestions for improving consumer safety.

De 2001 à 2010, la fréquence des mélanomes avait augmentée par plus de 2% pour les hommes et les femmes canadiens. Les nanoparticules de dioxyde de titane sont des additifs communs dans des produits de protection anti- UV. Elles sont un choix populaire à cause de leur capacité pour rendre les lotions et les crèmes transparentes, et leur fonction comme un filtre des rayons UV. Pourtant, leurs effets sur la peau, les autres organes et l’environnement sont pour la plupart inexplorés, qui provoque des questions concernant la sécurité de leur utilisation. Les résultats courants nous montrent que les nanoparticules de dioxyde de titane sont souvent moins dangereuses pour les organismes que les autres nanomatériaux. Néanmoins, les recherches sur les animaux de laboratoire et les cultures cellulaires montrent qu’il y a des dommages neurologiques, pulmonaires, cardiaques et génétiques assez signifiants une fois que les nanoparticules de dioxyde de titane sont absorbées par le système sanguin au moyen d’inhalation et ingestion. Les nanoparticules sont souvent déchargées du corps comme matières fécales ou urine, enlevées en passant sous l’eau, ou débarrassées dans les eaux usées ou elles peuvent entrer les usines d’assainissement d’eau. Ensuite, ces nanoparticules sont laissées dans les écosystèmes environnants. Le plus grand obstacle dans la recherche des nanoparticules est l’absence d’uniformité concernant la mesure et le rapport des résultats. Bien que les premières mesures des quantités de nanoparticules soient enregistrées, souvent les quantités de nanoparticules présentes après ces études ne sont pas enregistrées. Alors, c’est difficile de chiffrer la quantité de nanoparticules dans notre environnement et le taux auquel elles sont libérées. De plus, c’est rare que les fabricants étiquettent leurs produits d’une manière précise et alors les consommateurs peuvent être mal informés, entrainant la possibilité des effets négatifs sur la santé. Celles-ci sont les raisons pour lesquelles la communauté scientifique, les gouvernements, les industries, et les groupes environnementales ont besoin de collaborer dans les intérêts de la santé publique et la durabilité environnementale pour créer un précédent pour les avancées scientifiques dans le futur. Cet article fournit de information sur les propriétés des nanoparticules de dioxyde de titane, les effets de ces genres de particules sur la santé humaine et environnementale, les régulations courantes mis en place en Europe et Amérique du Nord, ainsi que des suggestions pour l’amélioration de la sécurité des consommateurs. 


Keywords


Titanium dioxide nanoparticles, Sunscreen, Safety, Toxicity, Regulations.

Full Text:

PDF

References


Sadrieh, N., et al. Lack of Signi cant Dermal Penetration of Titanium Dioxide from Sunscreen Formulations Containing Nano- and Submicron- Size TiO2 Particles. Toxicological Sciences 2010, 115, 156-166.

Weir, A.; Westerhoff, P.; Fabricius, L.; Hristovski, K.; Goetz, N. Titanium Dioxide Nanoparticles in Food and Personal Care Products. Environmental Science & Technology 2012. 46(4), 2242-2250

Australian Government Department of Health. Literature Review on the Safety of Titanium Dioxide and Zinc Oxide Nanoparticles in Sunscreens, Therapeutic Goods Administration 2013.

Bonner, J., et al. Interlaboratory Evaluation of Rodent Pulmonary Responses to Engineered Nanomaterials: The NIEHS Nano GO Consortium. Environmental Health Perspectives 2013, 121, 676-682.

Schilling, K.; Bradford, B.; Castelli, D.; Dufour, E.; Nash, JF.; Pape, W.; Schulte, S.; Tooley, I.; van den Bosch, J.; Schellauf, F. Human Safety Review of “Nano” Titanium Dioxide and Zinc Oxide. Photochem Photobiol Sci 2010, 9, 495-509.

Bennett, S.; Zhou, D.; Mielke, R.; Keller, A. Photoinduced Disaggregation of TiO2 Nanoparticles Enables Transdermal Penetration. PLOS One 2012, 7(11), e48719.

Sayes, CM.; Wahi, R.; Kurian, PA.; Liu, Y.; West, JL.; Ausman, KD.; Warheit, DB.; Colvin, VL. Correlating nanoscale titania structure with toxicity: a cytotoxicity and in ammatory response study with human dermal broblasts and human lung epithelial cells. Toxicol Sci. 2006, 92, 174–185.

Riu, J.; Maroto, A.; Rius, FX. Nanosensors in Environmental Analysis. Talanta. 2006, 69, 288- 301.

Vogt, A.; Combadiere, B.; Hadam, S.; Stieler, K.; Lademann, J.; Schaefer, H.; Autran, B.; Sterry, W.; Blume-Peytavi, U. 40 nm, but not 750 or 1 500 nm, Nanoparticles Enter Epidermal CD1a+ Cells after Transcutaneous Application on Human Skin. Journal of Investigative Dermatology. 2006, 126, 1316-1322.

Schulz, J.; Hohenberg, H.; P ücker, F.; Gärtner, E.; Will, T.; Pfeiffer, S.; Wepf, R.; Wendel, V.; Gers- Barlag, H.; Wittern, KP. Distribution of Sunscreens on Skin. Advanced Drug Delivery Review. [Online] 2002, 54(1), S157-S163.

Menzel, F.; Reinert, T.; Vogt, J.; Investigations of Percutaneous Uptake of Ultra ne TiO2 Particles at the High-Energy Ion Nanoprobe LIPSION. Nuclear Instruments and Research Section B. 2005, 231, 280-285.

Kiss, B.; Bíró, T.; Czifra, G. Investigation of Micronized Titanium Dioxide Penetration in Human Skin Xenografts and its Effect on Cellular Functions of Human Skin-Derived Cells. Experimental Dermatology. 2008, 17, 659-667.

Adachi, K.; Yamada, N.; Yamamoto, K.; Yoshida, Y.; Yamamoto, O. In vivo effect of industrial titanium dioxide nanoparticles experimentally exposed to hairless rat skin. Nanotoxicology. 2010, 4, 296- 306.

Wu, J.; Liu, W.; Xue, C. Toxicity and Penetration of TiO2 Nanoparticles in Hairless Mice and Porcine Skin After Subchronic Dermal Exposure. Toxicology Letters. 2009, 191, 1-8.

Gulson, B.; McCall, M.; Bowman, D.; Pinheiro, T. A Review of Critical Factors for Assessing the Dermal Absorption of Metal Oxide Nanoparticles from Sunscreens Applied to Humans, and a Research Strategy to Address Current De ciencies. Archives of Toxicology [Online] 2015, 89(11), 1909-30.

Grassian, V.; O’Shaughnessy, P.; Adamcakova- Dodd, A.; Pettibone, J.; Thorne, P. Inhalation Exposure Study of Titanium Dioxide Nanoparticles with a Primary Particle Size of 2 to 5 nm. Environmental Health Perspectives [Online] 2007, 115(3), 397-402.

Bermudez, E.; Mangum, J.; Wong, B.; Asgharian, B.; Hext, P.; Warheit, D.; Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultra ne titanium dioxide particles. Toxicol Sci. 2004, 77, 347-357.

Chen, Z.; Wang, Y.; Zhuo, L.; Chen, S.; Zhao, L.; Luan, X.; Wang, H.; Jia, G. Effect of titanium dioxide nanoparticles on the cardiovascular system after oral administration. Toxicol. Lett.. 2015, 239(2), 123-30.

Song, B.; Liu, J.; Feng, X.; Wei, L.; Shao, L. A Review on Potential Neurotoxicity of Titanium Dioxide Nanoparticles. Nanoscale Research Letters 2015, 10, 342

Hansen, S.F. Regulation and risk assessment of nanomaterials – too little, too late? Ph.D. Dissertation. Technical University of Denmark, Kongens Lyngby February 2009.

Chaudhry, Q. Opinion on Titanium Dioxide (nano form). European Commission, Scienti c Committee on Consumer Safety. 2013.

Wang, Y.; Cui, H.; Zhou, J.; Li, F.; Wang, J. Chen, M; Liu, Q. Cytotoxicity, DNA Damage, and Apoptosis Induced by Titanium Dioxide Nanoparticles in Human Non-small Cell Lung Cancer A549 Cells. Environmental Science and Pollution Research 2015, 22(7).

Huerta-Garcia, E.; Perez-Arizti, J.; Marquez- Ramirez, S.; Delgado-Beunrostro, N.;Chirino, Y.; Iglesias, G.; Lopez-Marure, R. Titanium Dioxide Nanoparticles Induce Strong Oxidative Stress and Mitochondrial Damage in Glial Cells. Free Radial Biology and Medicine 2014, 73, 84-94.

Baranova, L.A.; Zhornik, E.v.; Volotovski, I.D. The In uence of Silver and Titanium Dioxide Nanoparticles on the Expression of Genes that Encode Biomarker of In ammation and apoptosis. Biophysics 2015, 60(2), 181-187.

Moon, M.P. FDLI’s First Annual Conference on Nanotechnology Law, Regulation, and Policy. Biotechnology Law Report 2008.

International Center for Technology Assessment.

Citizen Petition to the United States Food and Drug Administration. 2006.

Environment Canada and Health Canada. Consultation Document: Proposed Approach to Address Nanoscale Forms of Substances on the Domestic Substances List, Environment and Climate Change Canada 2015. http://www.ec.gc.ca/lcpe-cepa/default. asp?lang=En&n=1D804F45-1&toc=show (accessed January 5, 2016).

EWG’s Sunscreen Guide, Environmental Working Group.[Online], 2016, 25(6), 289-326.

Heurung, A.R.; Raju, S.I.; Warshaw, E.M. Adverse Reactions to Sunscreen Agents: Epidemiology, Responsible Irritants and Allergens, Clinical Characteristics, and Management. Dermatitis [Online] 2014, 25, 289-326.

Neal, C.; Jarvie, H.; Rowland, P.; Lawler, A.; Sleep, D.; Schole eld, P. Titanium in UK rural, agricultural and urban/industrial rivers: Geogenic and anthropogenic colloidal/sub-colloidal sources and the signi cance of within-river retention. Sci. Total Environ 2011, 409 (10), 1843−1853.

Zhang, X.; Sun, H.; Zhang, Z.; Niu, Q.; Chen, Y.; Crittenden, JC. Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles. Chemosphere [Online] 2007, 76, 160--166.

Ates, M.; Daniels, J.; Arslan, Z.; Farah, I. Effects of Aqueous Suspensions of Titanium Dioxide Nanoparticles on Artemia salina: Assessment of Nanoparticle Aggregation Accumulation and Toxicity. Environ Monit Assess [Online] 2013, 185, 3339-3348.

Adams, LK.; Lyon DY.; Alvarez, PJ. Comparative Eco-Toxicity of Nanoscale TiO2, SiO2, and ZnO Water Suspensions. Water Res [Online] 2006, 40, 3527-3532.

Ma, H.; Brennan, A.; Diamond, SA. Photocatalytic Reactive Oxygen Species Production and Phototoxicity of Titanium Dioxide Nanoparticles are Dependent on the Solar Ultraviolet Radiation Spectrum. Environ Toxicol Chem [Online] 2012, 31, 2099-2107.

Shi, H.; Magaye, R.; Castranova, V.; Zhao, J. Titanium Dioxide Nanoparticles: a Review of Current Toxicological Data. Particle and Fibre Toxicology [Online] 2013, 10(15).




DOI: https://doi.org/10.13034/jsst.v10i1.113

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Journal of Student Science and Technology