Using agent-based modelling algorithms to analyze the impacts of toxic contaminations on Lake Ontario ecosystem

Mohammad-Masoud Zavvarian


Recent advances in computer technology have brought a revolution in ecological modelling. Ecoinformatics and computational ecology make use of various programs, including agent-based modeling algorithms, to study ecological systems. In this study, an in-silico analysis was performed using an agent based modelling software, to analyze the impacts of a potential toxin on Lake Ontario ecosystem. For easier duplication of the real world into the virtual system, the ecosystem was divided into 6 compartments. These compartments include phytoplankton, zooplankton, macroinvertebrates, forage fish, piscivores, and sea lamprey. The test model was performed under five different concentrations of toxin. Each test was repeated 15 times to reduce demographic stochasticity. The results suggest that toxic contaminations, such as mercury, could potentially lead to population reduction in forage fish, piscivores and sea lamprey compartments.

Les progrès récents reliés à la technologie informatique ont amené une révolution dans la modélisation écologique. L’éco-informatique et l’écologie computationnelle utilisent plusieurs programmes, y compris des algorithmes basés sur les systèmes multiagents pour étudier les systèmes écologiques. Dans cette étude, une analyse in
silico a été accomplie en utilisant les systèmes multiagents pour analyser les impacts d’une toxine potentielle dans l’écosystème du Lac Ontario. Afin de mieux améliorer la représentation du monde réel dans le système virtuel, l’écosystème du Lac d’Ontario a été divisé en six compartiments. Ces compartiments comprennent le phytoplancton, le zooplancton, les macroinvertébrés, les poissons fourragers, les piscivores et la lamproie marine. Ce modèle a été examiné sous cinq concentrations des toxines différentes. Chaque examen a été répété 15 fois pour réduire la stochasticité démographique. Les résultats suggèrent que des contaminations toxiques, comme la contamination par le mercure, pourraient potentiellement arriver à une réduction de la population des poissons fourragers, des piscivores et des compartiments de la lamproie marine.


Lake Ontario ecosystem; mercury; agent-based modelling; COBWEB; ecoinformatics; ecological simulation

Full Text:



Pyle, G. G; Rajotte, J. W; Couture, P. Effects of industrial metals on wild fish populations along a metal contamination gradient. Ecotox. Environ. Safe. 2005; 61: 287-312. DOI: 10.1016/j.econenv.2004.09.003.

Azevedo, B. F; Furieri, L. B; Pecanha, F. M; Wiggers, G. A; Vassallo, P. F; Simoes, M. R; Fiorim, J.; Batista, P. R; Fioresi, M.; Rossoni, L.; Stefanon, I.; Alonso, M. J; Salaices M.; Vassallo D, V. Toxic Effects of Mercury on the Cardiovascular and Central Nervous Systems. J. Biomed. Biotechnol. 2012; 2012: 1-11. DOI: 10.1155/2012/949048.

Petrovskii, S.; Petrovskaya, N. Computational ecology as an emerging science. Interface Focus 2012; 2: 241-254. DOI: 0.1098/rsfs.2011.0083.

Lai, S.; Holsen, T. M; Han, Y.; Hopke, P. P; Yi, S.; Blanchard, P.; Pagano, J. J; Milligan, M. Estimation of mercury loadings to Lake Ontario: Results from the Lake Ontario atmospheric deposition study (LOADS). Atmos. Environ. 2007; 41: 82205-8218. DOI: 10.1016/j.atmosenv.2007.06.035.

Hale, S. S; Hollister, J. W; Beyond data management: how ecoinformatics can benefit environmental monitoring programs. Environ. Monit. Assess 2009; 150: 227-235. DOI: 10.1007/s10661-008-0675-x.

National Oceanic and Atmospheric Administration. Great Lakes Environmental Research Laboratoey. (accessed Dec 1, 2014).

Dorin, A; Geard, N. The Practice of Agent-Based Model Visualization. Artif. Life 2014, 20: 271-289. DOI: 10.1162/ARTL_a_00129.

Bass, B; Chan E. Complexity and Organized Behaviour within Environmental Bounds (COBWEB): An Agent-Based Approach to Simulating Ecological Adaptation. J. Environ. Inform. 2005; 6: 58-71. DOI: 10.3808/jei.200500056.

Morel, F. M; Kraepiel, A. M; Amyot, M. The chemical cycle and bioaccumulation of mercury. Annu. Rev. Ecol. Syst. 1998; 29: 543-566. DOI: 10.1146/annurev.ecolsys.29.1.543

Boening, D. W. Ecological effects, transport, and fate of mercury: a general review. Chemosphere 2000; 40: 1335-1351. DOI: 10.1016/S0045-6535(99)00283-0.

Gilbertson, M.; Carpenter, D. O. An ecosystem approach to the health effects of mercury in the Great Lakes basin ecosystem. Environ. Res. 2004; 95: 240-246. DOI: 10.1016/j.envres.2004.02.015.

Depew, D. C; Burgess N. M; Anderson, M. R; Baker, R.; Bhavsar, S. P; Bodaly, R. A; Eckley, C. S; Evans, M. S; Gantner, M.; Graydon, J. A; Jacobs, K.; LeBlanc, J. E; St. Louis, V. L; Campbell, L. M. An overview of mercury concentrations in freshwater fish species: a national fish mercury dataset for Canada. Can J. Fish Aquiat. Sci. 2013; 70: 436-451. DOI: 10.1139/cjfas-2012-0338.

Depew, D. C; Basu, N.; Burgess, N. M; Campbell, L. M; Devlin, E. W; Drevnick, P. E; Hammerschmidt, C. R; Murphy, C. A; Sandheinrich, M. B; Wiener, J. G. Toxicity of dietary methylmercury to fish: Derivation of ecologically meaningful threshold concentration. Environ. Toxicol. Chem. 2012; 31,7: 1536-1547. DOI: 10.1002/etc.1859.



  • There are currently no refbacks.

Copyright (c) 2017 Journal of Student Science and Technology