Fingerprint Identification: Potential Sources of Error and the Cause of Wrongful Convictions

Irene C Grose


Fingerprint identification has long been used by law enforcement to either identify or eliminate potential suspects in a case. It relies on friction ridges – the upraised skin that forms grooves on fingers – and friction ridge impressions, which form from natural secretions of sweat and other trace components. Latent prints, a common term for friction ridge impressions, have many benefits and advantages as a type of forensic evidence. However, they are not a perfect tool: wrongful convictions identified by post-conviction DNA testing and the re-evaluation of forensic evidence have spawned criticism and investigation into the scientific basis of this branch of forensics. This literature review examines literature in both the scientific and legal fields, and investigates three main themes: the principle of uniqueness assumed in individualization, the presence of cognitive bias and human error in analysis, and the changing role of expert testimony in court. There are arguments both for and against uniqueness, but it is still difficult to prove using statistical models and data analysis. Bias in examiners, on the other hand, undeniably exists in different ways, and should be actively guarded against in fingerprint analysis and expert testimony. Expert witness testimony that misleads, exaggerates, or is scientifically unsupportable has been linked to wrongful convictions in the past, highlighting the importance of careful regulation of how an expert witness is advised to testify. In addition to these topics, the techniques of collecting latent print evidence and the standard procedures of analysis have also been examined and evaluated for potential sources of error.

Le maintien de l’ordre public utilise depuis longtemps les empreintes digitales pour identifier et éliminer des suspects d’une affaire criminelle. Les empreintes digitales se ent aux crêtes papillaires — les crêtes et les creux qui formes des rainures sur les doigts — et des empreintes des crêtes papillaires, ce qui se forme par les sécrétions naturelles de transpiration et autres composantes de traces. Les empreintes latentes, un terme courant pour les empreintes digitales, possèdent plusieurs avantages en tant qu’élément médico-légal de preuve. Toutefois, ce n’est pas une ressource able; des condamnations injustifiées identifiées par un test d’ADN post-condamnatoire et la réévaluation de l’évidence médico-légale ont frayé des critiques et des enquêtes de la base des sciences des empreintes digitales. Cette revue examine les textes dans les domaines scientifiques et médico-légaux, et examine trois thèmes : le principe d’unicité assumé par l’individualisation, la présence d’un biais cognitif et l’erreur humaine dans l’analyse, et le rôle changeant de témoignages experts devant la Cour. Il existe des arguments pour et contre l’unicité, mais l’unicité est tout de même difficile à prouver en utilisant les modèles statistiques et l’analyse de données. Un préjugé chez les examinateurs, d’autres parts, existe incontestablement, et devrait être activement évité lors de l’analyse d’empreinte digitale et de témoignages experts. Le témoignage d’expert qui induit en erreur, qui est exagéré ou qui est scientifiquement faux a mené à des condamnations injusti ées dans le passé, ce qui met en évidence l’importance d’une législation prudente sur comment l’expert est conseillé de témoigner. En plus de ces thèmes, les techniques de collecte des empreintes digitales latentes et les procédures normales d’analyse ont aussi été examinés et évalués pour des sources d’erreurs potentielles. 


Latent prints; Friction ridges; Individualisation; Uniqueness; Wrongful convictions

Full Text:



Ashbaugh, David R. Quantitative-Qualitative Friction Ridge Analysis: An Introduction to Basic and Advanced Ridgeology; CRC Press: New York, 1999; pp 144-156.

Bar-Hillel, M. On the subjective probability of compound events. Organizational Behavior and Human Performance 1973, 3, 396-406.

Broeders, A. Of earprints, fingerprints, scent dogs, cot deaths, and cognitive contamination---a brief look at the present state of play in the forensic arena. Forensic Science International 2006, 2-3, 148-157.

Budowle, B; Bottrell, M; Bunch, S; Fram, R; Harrison, D.; Meagher S; Oien, C; Peterson, P; Seiger, D.; Smith, M; Smrz, M; Soltis, G; Stacey, R. A Perspective on Errors, Bias, and Interpretation in the Forensic Sciences and Direction for Continuing Advancement. Journal of Forensic Sciences 2009, 4, 798-809.

Cole, S. More than Zero - Accounting for Error in Latent Fingerprint Identi cation. Journal of Criminal Law and Criminology 2005, 3, 985-1078.

Cole, S. Suspect Identities: A History of Fingerprinting and Criminal Identification; Harvard University Press: London, England, 2001; pp 159- 160.

Cole, S. Toward Evidence-Based Evidence: Supporting Forensic Knowledge Claims in the Post-Daubert Era. Tulsa Law Review 2007, 2, 263- 284.

Cooley, C.; Ober eld, G. Increasing forensic evidence’s reliability and minimizing wrongful convictions: applying Daubert isn’t the only problem. Tulsa Law Review 2007, 2, 285-380.

Daubert v. Merrell Dow Pharmaceuticals, Inc., 509 U.S. 580 (1992)

Dror, I.; Charlton, D.; Peron A. E. Contextual information renders experts vulnerable to making erroneous identi cations. Forensic Science International 2006, 1, 74-78.

Dror, I.; Kassin, S.; Kukucka J. Reply: New application of psychology to law: Improving forensic evidence and expert witness contributions. Journal of Applied Research in Memory and Cognition 2013, 1, 78-81.

Dror, I. Practical Solutions to Cognitive and Human Factor Challenges in Forensic Science. Forensic Science Policy & Management 2013, 3-4, 1-9.

Evett, I.W; Williams, R. L. Review of the Sixteen Points Fingerprint Standard in England and Wales. Journal of Forensic Identification 1996, 1, 49-73.

Expert Working Group on Human Factors in Latent Print Analysis. Latent Print Examination and Human Factors: Improving the Practice through a Systems Approach; National Institute of Standards and Technology: Washington, D.C., 2012; pp 1-234.

FPT Heads of Prosecutions Committee Working Group. Report on the Prevention of Miscarriages of Justice. Department of Justice Canada 2004, 1, 1-155.

Galton, F. Finger Prints; London, New York, 1892.

Macmillanand Co., London, New York, 1892.

Garrett, B.; Neufeld, P. Invalid Forensic Science Testimony and Wrongful Convictions. Virginia Law Review 2009, 1, 1-97.

Giannelli, P. Wrongful Convictions and Forensic Science: The Need to Regulate Crime Labs. North Carolina Law Review 2008, 1, 163-235.

Jain, A.; Maio, D.; Maltoni, D.; Prabhakar, S. Chapter 3: Fingerprint Analysis and Recognition. Handbook of Fingerprint Recognition, 2nd edition; Springer Science & Business Media: London, 2009; pp 98-101.

Kassin, S.M.; Dror, I.E.; Kukucha, J. The forensic confirmation bias: Problems, perspectives, and proposed solutions. Journal of Applied Research in Memory and Cognition 2013, 2, 42-52.

Koppl, R. Organization economics explains many forensic science errors. Journal of Institutional Economics, 2010, 1, 71-81.

Kumar, P.; Gupta, R.; Singh, R.; Om, P. J. Effects of latent fingerprint development reagents on subsequent forensic DNA typing: A review. Journal of Forensic and Legal Medicine 2015, 1, 64-69.

Lee, H. C.; Ramotowski, R. History and Development of Fingerprinting. Advances in Fingerprint Technology, Second Edition; CRC Press: Washington, D.C., 2001; pp 1-35

National Research Council - Committee on Identifying the Needs of the Forensic Sciences Community. Strengthening Forensic Science in the United States: A Path Forward; National Academies Press: Washington, D.C., 2009; pp 1-328.

Page, M.; Blenkin, M.; Taylor, J. Uniqueness in the forensic identification services: Fact or Fiction. Forensic Science International 2011, 1-3, 12-18.

Peterson, P. E.; Dreyfus, C. B.; Gische, M. R.; Hollars, M.; Roberts, M. A.; Ruth, R. M.; Webster, H. M.; Soltis, G. L. Latent Prints: A Perspective on the State of the Science. Forensic Science Communications 2009, 4.

Pretty, I. A.; Hall, R. Forensic dentistry and human bite marks: issues for doctors. Hospital Medicine 2002, 8, 476-482.

Roxburgh, T. Galton’s work on the evidential value of finger prints. The Indian Journal of Statistics 1933, 1, 50-62.

Saks, M.; Faigman, D. Failed Forensics: How Forensic Science Lost Its Way and How It Might Yet Find It. Annual Review of Law and Social Science 2008, 4, 149-171.

Saks, M. Forensic Identi cation: From a faith-based “Science” to a scientific science. Forensic Science International 2010, 1-3, 14-17.

Saks, M. Protecting Fact nders from Being Overly Misled, While Still Admitting to Weakly Supported Forensic Science into Evidence. Tulsa Law Review 2007, 2, 1-18.

Scientific Working Group on Friction Ridge Analysis (SWGFAST). html. (Accessed Jun 8, 2016).

Scientific Working Group on Friction Ridge Analysis, Study and Technology. SWGFAST Standards for Conclusions, version 1.0. 2003.

Scientific Working Group on Friction Ridge Analysis, Study and Technology. SWGFAST Standard for the Application of Blind Verification of Friction Ridge Examinations, version 2.0. 2012

Stacey, R. B. Report on the Erroneous Fingerprint Individualization in the Madrid Train Bombing Case. Forensic Science Communications 2004, 6, 706-718.

Stoney,D.A.Distributionofepidermalridgeminutiae. American Journal of Physical Anthropology 1988, 3, 367-376.

Thompson, W.; Cole, S. Psychological Aspects of Forensic Identification Evidence. Law and Society Review 2007, 1, 31-68.

Ulery, B. T.; Hicklin, R. A.; Buscaglia, J; Roberts, M. A.; Accuracy and reliability of forensic latent fingerprint decisions. Proceedings of the National Academy of Sciences of the United States 2011, 19, 7733-7738.

van Dam, A.; van Beek, F. T.; Aalders, M.; van Leeuwen, T. G.; Lambrechts, S. Techniques that acquire donor profiling information from fingermarks - A Review. Science and Justice 2016, 1, 143-154.



  • There are currently no refbacks.

Copyright (c) 2017 Journal of Student Science and Technology